organic compounds

2753 reflections with $I > 2\sigma(I)$

2 standard reflections every 150

intensity decay: none

 $R_{\rm int} = 0.058$

reflections

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Chloro-1*H*-indol-3-yl)acetonitrile

Mei-Ling Pan,* Xiang Li and Yang-Hui Luo

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: nantongpml@163.com

Received 4 December 2011; accepted 15 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.111; data-to-parameter ratio = 17.2.

The title compound, $C_{10}H_7CIN_2$, contains two approximately planar molecules, A and B (r.m.s. deviations = 0.039 and 0.064 Å, respectively) in the asymmetric unit. In the crystal, $N-H\cdots N$ hydrogen bonds link the molecules into C(7) chains of alternating A and B molecules propagating along the *a*-axis direction. The crystal used for the data collection was found to be a racemic twin.

Related literature

For a related structure, see: Ge et al. (2012).

Experimental

Crystal data $C_{10}H_7ClN_2$ $M_r = 190.63$ Orthorhombic, $Pca2_1$ a = 7.5091 (15) Å b = 11.041 (2) Å c = 21.380 (4) Å

V = 1772.6 (6) Å³ Z = 8Mo K α radiation $\mu = 0.38 \text{ mm}^{-1}$ T = 293 K $0.33 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.893$, $T_{max} = 0.927$ 17075 measured reflections 4057 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.111$	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
S = 1.03	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
4057 reflections	Absolute structure: Flack (1983),
236 parameters	1968 Friedel pairs
1 restraint	Flack parameter: 0.66 (10)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots N4$	0.86	2.42	3.089 (6)	135
$N2-H2A\cdots N3^{i}$	0.86	2.21	3.058 (6)	170

Symmetry code: (i) $x - \frac{1}{2}, -y + 2, z$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6554).

References

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881. Ge, Y.-H., Pan, M.-L., Xu, J. & Luo, Y.-H. (2012). Acta Cryst. E**68**, 0141.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o203 [doi:10.1107/S1600536811054079]

2-(4-Chloro-1H-indol-3-yl)acetonitrile

M.-L. Pan, X. Li and Y.-H. Luo

Experimental

The title compound 3-(cyanomethyl)indole-4-chlorine was purchased commercially from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). and were used as received without further purification. Colourles prisms were obstained by slow evaporation of a methanol solution.

Refinement

Positional parameters of all H atoms were calculated geometrically and the H atoms were set to ride the C atoms and N atoms to which they are bonded, with Uiso~(H)= 1.2 Uiso~(C, N).C—H atoms were included with bond distances ranging from 0.93 to 0.97 Å. Amide N—H hydrogen atoms were included with a distance set to 0.86 Å.

Figures

Fig. 1. The molecular structure of the title compound showing 30% displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, showing the structure from the *a* axis. Hydrogen bonds are shown as dashed lines.

2-(4-Chloro-1H-indol-3-yl)acetonitrile

Crystal data
C ₁₀ H ₇ ClN ₂
$M_r = 190.63$
Orthorhombic, Pca21
Hall symbol: P 2c -2ac
<i>a</i> = 7.5091 (15) Å
<i>b</i> = 11.041 (2) Å
c = 21.380 (4) Å
V = 1772.6 (6) Å ³
Z = 8

F(000) = 784 $D_x = 1.429 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4057 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.33 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer	2753 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
CCD_Profile_fitting scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.893, T_{\max} = 0.927$	$l = -27 \rightarrow 27$
17075 measured reflections	2 standard reflections every 150 reflections
4057 independent reflections	intensity decay: none

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.1573P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.111$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
4057 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
236 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
1 restraint	Extinction coefficient: 0
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1968 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.66 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.57185 (18)	0.47362 (9)	-0.10226 (5)	0.0585 (3)
N1	0.3359 (6)	0.4908 (3)	0.1147 (2)	0.0451 (11)
H1A	0.3006	0.4743	0.1520	0.054*

N3	0.4392 (5)	0.9029 (3)	0.05314 (18)	0.0781 (11)
C1	0.3547 (5)	0.6055 (3)	0.0894 (2)	0.0470 (11)
H1B	0.3234	0.6773	0.1093	0.056*
C2	0.4252 (4)	0.5977 (3)	0.0317 (2)	0.0372 (8)
C3	0.4428 (6)	0.4720 (4)	0.0164 (2)	0.0356 (8)
C4	0.4979 (4)	0.4026 (3)	-0.03431 (17)	0.0399 (7)
C5	0.4984 (6)	0.2769 (3)	-0.0313 (2)	0.0528 (12)
H5A	0.5375	0.2322	-0.0656	0.063*
C6	0.4413 (6)	0.2172 (4)	0.0222 (3)	0.0571 (13)
H6A	0.4426	0.1330	0.0233	0.069*
C7	0.3829 (4)	0.2803 (3)	0.07360 (19)	0.0521 (9)
H7A	0.3450	0.2411	0.1097	0.062*
C8	0.3834 (5)	0.4034 (3)	0.0688 (2)	0.0412 (10)
C9	0.4689 (6)	0.7050 (3)	-0.00949 (18)	0.0454 (10)
H9A	0.5898	0.6971	-0.0249	0.055*
H9B	0.3894	0.7056	-0.0452	0.055*
C10	0.4518 (6)	0.8176 (3)	0.0240 (2)	0.0491 (10)
Cl2	0.31981 (19)	1.02214 (9)	0.39526 (5)	0.0628 (4)
N2	0.0887 (6)	1.0076 (3)	0.1779 (2)	0.0540 (13)
H2A	0.0441	1.0232	0.1417	0.065*
N4	0.1867 (6)	0.5920 (3)	0.23876 (19)	0.0798 (11)
C11	0.1204 (5)	0.8969 (4)	0.20034 (19)	0.0454 (10)
H11A	0.1048	0.8260	0.1775	0.054*
C12	0.1782 (4)	0.9000 (3)	0.26055 (19)	0.0401 (8)
C13	0.1928 (6)	1.0261 (4)	0.2749 (2)	0.0385 (9)
C14	0.2470 (4)	1.0945 (3)	0.32694 (17)	0.0442 (8)
C15	0.2436 (6)	1.2171 (3)	0.3253 (2)	0.0531 (11)
H15A	0.2807	1.2608	0.3601	0.064*
C16	0.1853 (6)	1.2786 (4)	0.2721 (3)	0.0618 (14)
H16A	0.1840	1.3628	0.2720	0.074*
C17	0.1308 (4)	1.2175 (4)	0.2208 (2)	0.0594 (10)
H17A	0.0889	1.2594	0.1861	0.071*
C18	0.1377 (5)	1.0878 (3)	0.2203 (2)	0.0422 (10)
C19	0.2208 (6)	0.7932 (3)	0.30169 (19)	0.0468 (10)
H19A	0.3417	0.8005	0.3172	0.056*
H19B	0.1410	0.7926	0.3374	0.056*
C20	0.2024 (7)	0.6794 (4)	0.2670 (3)	0.0579 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0658 (7)	0.0684 (5)	0.0413 (6)	-0.0070 (6)	0.0135 (6)	-0.0086 (8)
N1	0.050 (3)	0.056 (2)	0.029 (3)	-0.0015 (13)	0.004 (2)	0.0031 (12)
N3	0.124 (3)	0.050 (2)	0.060 (2)	-0.011 (2)	-0.015 (2)	-0.0052 (17)
C1	0.037 (2)	0.043 (2)	0.061 (3)	0.0015 (15)	0.0014 (18)	-0.013 (2)
C2	0.0324 (18)	0.0367 (19)	0.042 (2)	-0.0052 (15)	-0.0034 (17)	-0.0017 (16)
C3	0.030 (2)	0.0480 (19)	0.029 (2)	0.001 (2)	-0.0011 (15)	-0.004 (2)
C4	0.0335 (17)	0.0480 (18)	0.0383 (19)	-0.0033 (16)	0.0004 (14)	-0.0022 (15)

supplementary materials

C5	0.050 (2)	0.037 (2)	0.072 (3)	0.0072 (18)	-0.005 (2)	-0.018 (2)
C6	0.050 (2)	0.047 (2)	0.074 (3)	-0.001 (2)	-0.008 (2)	0.005 (2)
C7	0.049 (2)	0.057 (2)	0.051 (2)	-0.0046 (16)	-0.0075 (17)	0.014 (2)
C8	0.042 (2)	0.046 (2)	0.036 (2)	0.0043 (15)	-0.0130 (18)	-0.0005 (16)
C9	0.051 (2)	0.045 (2)	0.040 (2)	-0.0052 (17)	-0.0022 (19)	-0.0067 (16)
C10	0.064 (3)	0.036 (2)	0.047 (2)	-0.0061 (19)	-0.0045 (19)	-0.0002 (19)
Cl2	0.0702 (8)	0.0734 (6)	0.0447 (7)	0.0137 (6)	-0.0164 (6)	-0.0136 (9)
N2	0.056 (3)	0.071 (3)	0.035 (3)	0.0072 (15)	-0.009 (3)	0.0068 (14)
N4	0.122 (3)	0.043 (2)	0.074 (3)	-0.005 (2)	0.009 (2)	-0.0032 (18)
C11	0.050 (2)	0.056 (2)	0.030 (2)	0.0035 (18)	0.0019 (16)	0.0035 (17)
C12	0.0360 (19)	0.054 (2)	0.031 (2)	0.0018 (17)	0.0026 (17)	-0.0042 (17)
C13	0.033 (2)	0.0450 (18)	0.038 (2)	0.003 (2)	0.0077 (16)	0.000 (2)
C14	0.0391 (19)	0.0499 (19)	0.044 (2)	0.0003 (17)	0.0050 (16)	-0.0071 (17)
C15	0.048 (2)	0.053 (2)	0.058 (3)	-0.001 (2)	0.006 (2)	-0.007 (2)
C16	0.066 (3)	0.033 (2)	0.087 (4)	-0.001 (2)	0.022 (3)	0.002 (2)
C17	0.051 (2)	0.061 (2)	0.066 (3)	0.0055 (19)	0.008 (2)	0.023 (2)
C18	0.032 (2)	0.041 (2)	0.053 (3)	0.0096 (15)	0.002 (2)	0.0007 (18)
C19	0.049 (2)	0.045 (2)	0.046 (3)	0.0065 (17)	0.0035 (19)	0.0020 (17)
C20	0.075 (3)	0.052 (2)	0.046 (3)	0.003 (2)	0.009 (2)	0.008 (2)
Geometric po	arameters (Å, °)					
Cl1—C4		1.742 (4)	Cl2-	C14	1.75	52 (4)
N1-C1		1.385 (5)	N2—	-C18	1.31	9 (6)
N1—C8		1.421 (6)	N2—	-C11	1.33	5 (5)

N1—C8	1.421 (6)	N2—C11	1.335 (5)
N1—H1A	0.8600	N2—H2A	0.8601
N3—C10	1.132 (5)	N4—C20	1.144 (6)
C1—C2	1.346 (5)	C11—C12	1.359 (5)
C1—H1B	0.9300	C11—H11A	0.9300
C2—C3	1.432 (4)	C12—C13	1.430 (5)
С2—С9	1.511 (5)	C12—C19	1.506 (5)
C3—C4	1.391 (5)	C13—C14	1.405 (6)
C3—C8	1.424 (6)	C13—C18	1.413 (6)
C4—C5	1.390 (5)	C14—C15	1.354 (5)
C5—C6	1.388 (7)	C15—C16	1.395 (7)
С5—Н5А	0.9300	C15—H15A	0.9300
C6—C7	1.373 (7)	C16—C17	1.351 (7)
С6—Н6А	0.9300	C16—H16A	0.9300
С7—С8	1.364 (5)	C17—C18	1.434 (6)
С7—Н7А	0.9300	С17—Н17А	0.9300
C9—C10	1.441 (5)	C19—C20	1.466 (6)
С9—Н9А	0.9700	С19—Н19А	0.9700
С9—Н9В	0.9700	С19—Н19В	0.9700
C1—N1—C8	109.0 (4)	C18—N2—C11	108.5 (5)
C1—N1—H1A	125.9	C18—N2—H2A	126.4
C8—N1—H1A	125.1	C11—N2—H2A	125.2
C2-C1-N1	109.9 (4)	N2-C11-C12	112.0 (4)
C2—C1—H1B	125.1	N2—C11—H11A	124.0
N1—C1—H1B	125.1	C12—C11—H11A	124.0

C1—C2—C3	107.9 (3)	C11—C12—C13	104.6 (4)
C1—C2—C9	124.7 (3)	C11—C12—C19	127.0 (3)
C3—C2—C9	127.4 (4)	C13—C12—C19	128.4 (4)
C4—C3—C8	114.4 (3)	C14—C13—C18	118.7 (4)
C4—C3—C2	137.6 (4)	C14—C13—C12	135.7 (4)
C8—C3—C2	107.9 (4)	C18—C13—C12	105.6 (4)
C3—C4—C5	121.0 (3)	C15-C14-C13	120.7 (4)
C3—C4—Cl1	119.8 (3)	C15-C14-Cl2	118.9 (3)
C5—C4—Cl1	119.2 (3)	C13—C14—Cl2	120.4 (3)
C6—C5—C4	120.7 (4)	C14—C15—C16	120.9 (4)
С6—С5—Н5А	119.6	C14—C15—H15A	119.5
С4—С5—Н5А	119.6	C16—C15—H15A	119.5
C7—C6—C5	121.2 (4)	C17—C16—C15	120.9 (4)
С7—С6—Н6А	119.4	C17—C16—H16A	119.5
С5—С6—Н6А	119.4	C15-C16-H16A	119.5
C6—C7—C8	116.4 (4)	C16—C17—C18	119.6 (4)
С6—С7—Н7А	121.8	С16—С17—Н17А	120.2
С8—С7—Н7А	121.8	C18—C17—H17A	120.2
C7—C8—C3	126.2 (4)	N2-C18-C13	109.1 (4)
C7—C8—N1	128.6 (4)	N2—C18—C17	131.7 (4)
C3—C8—N1	105.1 (3)	C13—C18—C17	119.0 (4)
C10—C9—C2	111.5 (3)	C20—C19—C12	110.8 (4)
С10—С9—Н9А	109.3	C20—C19—H19A	109.5
С2—С9—Н9А	109.3	C12-C19-H19A	109.5
С10—С9—Н9В	109.3	С20—С19—Н19В	109.5
С2—С9—Н9В	109.3	C12—C19—H19B	109.5
Н9А—С9—Н9В	108.0	H19A—C19—H19B	108.1
N3—C10—C9	176.5 (5)	N4—C20—C19	178.4 (5)
C8—N1—C1—C2	-4.9 (5)	C18—N2—C11—C12	5.0 (6)
N1—C1—C2—C3	3.9 (5)	N2-C11-C12-C13	-3.6 (5)
N1-C1-C2-C9	-178.4 (4)	N2-C11-C12-C19	177.7 (4)
C1—C2—C3—C4	177.3 (5)	C11—C12—C13—C14	-178.4 (5)
C9—C2—C3—C4	-0.2 (8)	C19—C12—C13—C14	0.3 (8)
C1—C2—C3—C8	-1.5 (4)	C11—C12—C13—C18	0.9 (4)
C9—C2—C3—C8	-179.1 (4)	C19—C12—C13—C18	179.6 (4)
C8—C3—C4—C5	-2.0 (5)	C18—C13—C14—C15	1.2 (6)
C2—C3—C4—C5	179.2 (5)	C12—C13—C14—C15	-179.6 (5)
C8—C3—C4—Cl1	179.3 (3)	C18—C13—C14—Cl2	-179.0 (3)
C2—C3—C4—Cl1	0.5 (7)	C12—C13—C14—Cl2	0.3 (7)
C3—C4—C5—C6	1.0 (6)	C13—C14—C15—C16	0.4 (6)
Cl1—C4—C5—C6	179.7 (4)	Cl2—C14—C15—C16	-179.5 (4)
C4—C5—C6—C7	0.0 (7)	C14—C15—C16—C17	0.0(7)
C5—C6—C7—C8	0.4 (6)	C15—C16—C17—C18	-1.8 (7)
C6—C7—C8—C3	-1.7 (6)	C11—N2—C18—C13	-4.2 (6)
C6—C7—C8—N1	-177.9 (4)	C11—N2—C18—C17	-179.0 (4)
C4—C3—C8—C7	2.5 (6)	C14—C13—C18—N2	-178.5 (4)
C2—C3—C8—C7	-178.3 (4)	C12—C13—C18—N2	2.0 (5)
C4—C3—C8—N1	179.4 (4)	C14—C13—C18—C17	-3.0 (6)
C2—C3—C8—N1	-1.4 (4)	C12—C13—C18—C17	177.5 (3)

supplementary materials

C1—N1—C8—C7	-179.4 (4)	C16—C17—C18—N2	177.7 (5)
C1—N1—C8—C3	3.8 (5)	C16-C17-C18-C13	3.4 (6)
C1—C2—C9—C10	8.9 (6)	C11—C12—C19—C20	3.4 (6)
C3—C2—C9—C10	-173.9 (4)	C13-C12-C19-C20	-174.9 (4)
C2-C9-C10-N3	21 (9)	C12-C19-C20-N4	-3(20)

Hydrogen-bond geometry (Å, $^{\circ}$)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1A…N4	0.86	2.42	3.089 (6)	135
N2—H2A…N3 ⁱ	0.86	2.21	3.058 (6)	170
Symmetry codes: (i) $x-1/2$, $-y+2$, z .				

Fig. 1

Fig. 2

